Use conditional weights
Substrate provides a mechanism known as transaction weighting to quantify the resources consumed while executing a transaction. Typically, we use the weight functions returned from our benchmarking for this. But Substrate also allow us to apply a totally different weight function based on certain condition. We will walk through an example in this guide. Once defined, it can be used directly in your pallet, written as such:
#[pallet::weight(Conditional(\<your condition\>)
Objectives
- Create and use custom weighting in your pallet.
- Apply different weight functions based on certain condition on computing extrinsic's weight value.
Here are the different traits we'll be implementing:
- `WeighData`: Weigh the data in a function.
`pallet::weight` expects whatever implements `WeighData
` to replace `T` with a tuple of the dispatch arguments. - `PaysFee`: Designate whether the dispatch pays a fee or not.
- `ClassifyDispatch`: A way to tell the runtime about the type of dispatch being made.
Steps
1. Write the WeighData struct
Import DispatchClass, WeighData and PaysFee by declaring use frame_support::dispatch::{DispatchClass, PaysFee, WeighData}
at the top of your pallet.
In your pallet's lib.rs file, declare a struct called Conditional and write an implementation
of WeighData for Conditional, where the first parameter is the condition that evaluate to
a boolean value. In the following example, if the condition is true, the weight will be linear to
the input. Otherwise the weight will be a constant.
pallets/example/src/lib.rs
use frame_support::dispatch::{DispatchClass, PaysFee, WeighData};
// -- snip --
pub struct Conditional(u32);
impl WeighData<(&bool, &u32)> for Conditional {
fn weigh_data(&self, (switch, val): (&bool, &u32)) -> Weight {
// If the first parameter is true, then the weight is linear in the second parameter.
if *switch {
val.saturating_mul(self.0)
}
// Otherwise the weight is constant.
else {
self.0
}
}
}2. Classify dispatch calls
Add weights::{ClassifyDispatch, DispatchClass, Pays, Weight} to your pallet's frame_support imports.
Since this implementation of WeighData requires a DispatchClass, use default
to classify all calls as normal:
pallets/example/src/lib.rs
use frame_support::weights::{ClassifyDispatch, DispatchClass, Pays, Weight};
// -- snip --
// Implement ClassifyDispatch
impl<T> ClassifyDispatch<T> for Conditional {
fn classify_dispatch(&self, _: T) -> DispatchClass {
Default::default()
}
}3. Implement PaysFee
Specify how PaysFee is used for the custom WeighData struct. Setting this to true will require the
caller of this dispatch to pay a fee:
pallets/example/src/lib.rs
use frame_support::weights::PaysFee
// -- snip --
// Implement PaysFee
impl PaysFee for Conditional {
fn pays_fee(&self) -> bool {
true
}
}4. Use the weighting struct for an extrinsic
Use the conditional weighting struct on your pallet's extrinsics like this:
pallets/example/src/lib.rs
#[pallet::weight(Conditional(200))]
fn example(origin: OriginFor<T>, add_flag: bool, val: u32>) -> DispatchResult {
//...
}